Endomorphisms and decompositions of Jacobians

Jeroen Sijsling
Universität Ulm

joint work with
Edgar Costa, Jeroen Hanselman, Nicolas Mascot and John Voight

ICERM, Providence
3 June 2019

Setup

Let F be a number field with algebraic closure $F^{\text {al }}$. Let X be a nice (smooth, projective, geometrically integral) curve over F of genus g given by equations. Let J be the Jacobian of X. We want to compute the endomorphism ring End(J).

Setup

Let F be a number field with algebraic closure $F^{\text {al }}$. Let X be a nice (smooth, projective, geometrically integral) curve over F of genus g given by equations. Let J be the Jacobian of X. We want to compute the endomorphism ring End(J).

We represent an element $\alpha \in \operatorname{End}(J)$ as follows. Fix a base point $P_{0} \in X$. This determines a map

$$
\begin{aligned}
\iota: X & \rightarrow J \\
P & \mapsto[P]-\left[P_{0}\right]
\end{aligned}
$$

which is injective if $g>0$. We get a composed map

$$
\begin{aligned}
\alpha \circ \iota: X & \rightarrow J \rightarrow J \\
& P \mapsto \alpha(\iota(P))=: \sum_{i=1}^{g} \iota\left(Q_{i}\right) .
\end{aligned}
$$

This traces out a divisor on $X \times X$, which determines α.

Alternative representations

$$
\begin{aligned}
\alpha \circ \iota: X & \rightarrow J \rightarrow J \\
& P \mapsto \alpha(\iota(P))=\sum_{i=1}^{g} \iota\left(Q_{i}\right)
\end{aligned}
$$

Alternatively, we can use a (possibly singular) plane equation $f(x, y)=0$ for X. We can describe the points Q_{i} by giving a polynomial that vanishes on their x-coordinates, along with a second polynomial that interpolates the corresponding y-values. This leads to Cantor equations

$$
\begin{aligned}
x^{g}+a_{1} x^{g-1}+\ldots+a_{g} & =0 \\
b_{1} x^{g-1}+\ldots+b_{g} & =y
\end{aligned}
$$

with $a_{i}, b_{j} \in F(X)$.

Alternative representations

The tangent space of J in 0 is naturally isomorphic to the dual of $H^{0}\left(X, \omega_{X}\right)$, and over \mathbb{C} we have

$$
J(\mathbb{C})=H^{0}\left(X(\mathbb{C}), \omega_{X}\right)^{\vee} / H_{1}(X(\mathbb{C}), \mathbb{Z})
$$

If $D \subset X \times X$ is the divisor corresponding to α, then for $T=T \alpha$ we have

$$
T=\left(\left(p_{1}\right)_{*}\left(p_{2}\right)^{*}\right)^{\vee}: H^{0}\left(X, \omega_{X}\right)^{\vee} \rightarrow H^{0}\left(X, \omega_{X}\right)^{\vee}
$$

Over \mathbb{C}, we also get a second, compatible map

$$
R: H_{1}(X(\mathbb{C}), \mathbb{Z}) \rightarrow H_{1}(X(\mathbb{C}), \mathbb{Z})
$$

In practice, we choose bases and consider T as an element of $\mathrm{M}_{g}\left(F^{\mathrm{al}}\right)$ and R as an element of $\mathrm{M}_{2 g}(\mathbb{Z})$. For the period matrix Π of X we then have

$$
T \Pi=\Pi R .
$$

Our objective, more precisely

For us, to compute the endomorphism ring of J means to determine and represent the ring $\operatorname{End}\left(J_{F^{a l}}\right)$ as a $\operatorname{Gal}\left(F^{\mathrm{al}} \mid F\right)$-module. In other words, we want to calculate

- a finite Galois extension $K \supseteq F$ with $\operatorname{End}\left(J_{K}\right)=\operatorname{End}\left(J_{F^{\text {al }}}\right)$,
- a \mathbb{Z}-basis for $\operatorname{End}\left(J_{K}\right)$, and
- the multiplication table as well as the action of $\operatorname{Gal}(K \mid F)$ (both with respect to the aforementioned basis).

This computational problem has many applications, for example in modularity.

Main idea: And once the twain shall meet

Davide Lombardo has shown that there is a day-and-night algorithm to compute the geometric endomorphism ring of J. Briefly:

- By a theorem of Silverberg, $\operatorname{End}\left(J_{F^{\text {al }}}\right)$ is defined over $K=F(J[3])$.
- By day, we compute a lower bound by searching for endomorphisms by naively trying all maps $J \rightarrow J$.
- By night, we compute an upper bound by creeping up on the isomorphism

$$
\operatorname{End}\left(J_{K}\right) \otimes \mathbb{Z}_{\ell} \simeq \operatorname{End}_{\operatorname{Gal}\left(F^{\mathrm{al}} \mid K\right)} T_{\ell}\left(J_{K}\right)
$$

Eventually, the lower and upper bounds will meet. More effective versions of these upper bounds are themes of ongoing work by Lombardo et al.

State of the art on upper bounds

$$
A \sim \prod_{i=1}^{t} A_{i}^{n_{i}}, \operatorname{dim}_{L_{i}} B_{i}=e_{i}^{2} .
$$

Theorem

If the Mumford-Tate conjecture holds for A, then we can compute

- The number of factors t;
- The quantity $\sum_{i} e_{i} n_{i}^{2} \operatorname{dim} A_{i}$;
- The set of tuples $\left\{\left(e_{i} n_{i}, n_{i} \operatorname{dim} A_{i}\right)\right\}_{i}$.
- The centers L_{i}.

Ye olde heuristic approache

To find a lower bound, we first approximate the numerical endomorphism ring of $J_{\mathbb{C}}=\mathbb{C}^{g} / \Lambda$. These methods were also used in genus $g=2$ by Van Wamelen (CM) and Kumar-Mukamel (RM), using the former's Magma algorithms.

- Embed $F^{\text {al }} \hookrightarrow \mathbb{C}$, and compute (via Molin-Neurohr or Bruin) a period matrix Π for J to some precision, with period lattice Λ.
- Use LLL to determine a basis of the \mathbb{Z}-module of matrices $R \in \mathrm{M}_{2 g}(\mathbb{Z})$ such that $T \Pi=\Pi R$ for some T.
- Determine the matrices T in the equality $T \Pi=\Pi R$ to obtain the representation of $\operatorname{End}\left(J_{K}\right)$ on the tangent space at 0 , and recognize T as an element of $\mathrm{M}_{g}(K)$ using LLL.
- (!!!) By exact computation, certify the endomorphisms in the previous step.
- Recover the Galois action $\operatorname{Gal}(K \mid F)$ by the action on the matrices T.

Computing divisorial correspondences

In the approach of Van Wamelen and Kumar-Mukamel, the endomorphism is verified by interpolating the divisor after calculating enough pairs $\left(P, Q_{i}\right) \in X \times X$ over \mathbb{C}.

To do this, we have to understand the composed map

$$
X_{\mathbb{C}} \xrightarrow{\mathrm{AJ}} J_{\mathbb{C}} \xrightarrow{T} J_{\mathbb{C}}-{ }^{\text {Mum }} \operatorname{Sym}^{g}\left(X_{\mathbb{C}}\right)
$$

The tricky part is the map Mum, which involves numerically inverting the Abel-Jacobi map AJ; given $b \in \mathbb{C}^{g} / \Lambda$, we want to find a g-tuple of points $\left\{Q_{1}, \ldots, Q_{g}\right\}$ that gives rise to it.

Robust Mumford map

We are given $b \in \mathbb{C}^{g} / \Lambda$, and we want to compute

$$
\operatorname{Mum}(b)=\left\{Q_{1}, \ldots, Q_{g}\right\}
$$

where

$$
\left(\sum_{i=1}^{g} \int_{P_{0}}^{Q_{i}} \omega_{i}\right)_{i=1, \ldots, g} \equiv b \quad(\bmod \Lambda)
$$

This doesn't converge well! It converges better if we replace $\int_{P_{0}}^{Q_{i}}$ with $\int_{P_{i}}^{Q_{i}}$ with P_{i} distinct and b is close to 0 modulo Λ.

To improve things, compute with $b^{\prime}=b / 2^{m}$ with $m \in \mathbb{Z}_{>0}$ to find $\operatorname{Mum}\left(b^{\prime}\right)=\left\{Q_{1}^{\prime}, \ldots, Q_{g}^{\prime}\right\}$. Methods of Khuri-Makdisi allow us to (numerically) multiply back by 2^{m} to recover $\left\{Q_{1}, \ldots, Q_{g}\right\}$.

Dispense with numerical interpolation

But numerical computation comes with too many epsilons; it would be easier if we could avoid it, and in fact we can.

Theorem (CMSV, 2017)

There exists a deterministic algorithm that, given $T \in M_{g}(K)$, determines whether T corresponds to an actual endomorphism $\alpha \in \operatorname{End}(J)$, along with a divisor D inducing α if it does.

Puiseux lift

Suppose that P_{0} is a non-Weierstrass point. Our methods compute a high-order approximation of

$$
\alpha\left(\left[\widetilde{P}_{0}-P_{0}\right]\right)=\left[\widetilde{Q}_{1}+\cdots+\widetilde{Q}_{g}-g P_{0}\right]
$$

where $\widetilde{P}_{0} \in X(K[[x]])$ is the formal expansion of P_{0} with respect to a suitable uniformizer x at P_{0}. The points \widetilde{Q}_{i} are then defined over the ring of (integral) Puiseux series $F^{\text {al }}\left[\left[x^{1 / \infty}\right]\right]$.

To do this, we proceed as follows. For $j=1, \ldots, g$, let

$$
x_{j}=x\left(\widetilde{Q}_{j}\right) \in F^{\mathrm{al}}\left[\left[x^{1 / \infty}\right]\right] .
$$

The required action by α on a basis ω_{i} of differentials implies:

$$
\sum_{j=1}^{g} x_{j}^{*}\left(\omega_{i}\right)=T^{*}\left(\omega_{i}\right), \quad \text { for all } i=1, \ldots, g
$$

Puiseux lift

$$
\sum_{j=1}^{g} x_{j}^{*}\left(\omega_{i}\right)=T^{*}\left(\omega_{i}\right), \quad \text { for all } i=1, \ldots, g
$$

To do this, we first determine an initial expansion, typically

$$
x_{1}=c_{1,1} x^{1 / g}, \ldots, x_{g}=c_{g, 1} x^{1 / g}
$$

After this, we iterate. In terms of the parameter x, we get

$$
\sum_{j=1}^{g} f_{i}\left(x_{j}\right) \frac{d x_{j}}{d x}=\sum_{j=1}^{g} T_{i j} f_{j}(x)
$$

After integrating the f_{i} (as power series up to a certain precision), this becomes

$$
\sum_{j=1}^{g} F_{i}\left(x_{j}(x)\right)=\sum_{j=1}^{g} T_{i j} F_{j}(x)
$$

and we can find implicit solutions x_{j} as usual via Hensel.

Remarks

- We obtain further speedups by working over finite fields and reconstructing a divisor over F by using Sun Zi's theorem.
- Our method works just as well for isogenies and projections.
- We have verified, decomposed and matched the 66,158 curves over \mathbb{Q} of genus 2 in the L-functions and modular form database (LMFDB).
- The algorithms verify that the plane quartic

$$
\begin{aligned}
X: x^{4} & -x^{3} y+2 x^{3} z+2 x^{2} y z+2 x^{2} z^{2}-2 x y^{2} z+4 x y z^{2} \\
& -y^{3} z+3 y^{2} z^{2}+2 y z^{3}+z^{4}=0
\end{aligned}
$$

has complex multiplication (found in work with Kiliçer, Labrande, Lercier, Ritzenthaler, and Streng).

- Try it: https://github.com/edgarcosta/endomorphisms contains friendly button-push algorithms.

Demonstration

- We can check that the curve

$$
x: y^{2}+\left(x^{3}+x+1\right) y=-x^{5}
$$

has RM by the quadratic order of discriminant 5 .

- We can check that conjectural fake elliptic curves over $\mathbb{Q}(\sqrt{-3})$ are genuine. (Ciaran Schembri)
- We can check that the projective curve defined by

$$
\begin{array}{r}
-y z-12 z^{2}+x w-32 w^{2}=0 \\
y^{3}+108 x^{2} z+36 y^{2} z+8208 x z^{2}-6480 y z^{2}+74304 z^{3}+96 y^{2} w \\
+2304 y z w-248832 z^{2} w+2928 y w^{2}-75456 z w^{2}+27584 w^{3}=0
\end{array}
$$

is of GL_{2}-type, with endomorphism algebra $\mathbb{Q}\left(\zeta_{8}\right)$ over \mathbb{Q}; over $\overline{\mathbb{Q}}$, it is the fourth power of an elliptic curve. (David Zureick-Brown)

Decomposition

Let X be a genus- 3 curve over F that is not simple. For simplicity, we assume that $\operatorname{End}(X) \otimes \mathbb{Q}$ is isomorphic to $\mathbb{Q} \times \mathbb{Q}$. Then

$$
J=\operatorname{Jac}(X) \sim E \times \operatorname{Jac}(Y)
$$

for curves E and Y of genus 1 and 2, respectively. The algorithms enable us to explicitly observe some rationality phenomena:

- The curve E is defined over F, as is the corresponding projection $\varphi: X \rightarrow E$ of degree d say;
- The complementary abelian subvariety $B=\operatorname{ker}^{0}(\varphi)$ carries a polarization of type $(1, d)$. To obtain a principally polarized variety B^{\prime}, we need to take an isogeny of degree d.
- When $d=p$ is prime, then there are $p+1$ such isogenies, which typically form one Galois orbit.
- Curves Y^{\prime} such that $\operatorname{Jac}\left(Y^{\prime}\right)=B^{\prime}$ can be found using https://github.com/jrsijsling/curve_reconstruction.

Demonstration

We decompose the plane quartic curve
$X:=x^{3} z+2 x^{2} y^{2}+x^{2} y z+2 x^{2} z^{2}-x y^{2} z+x y z^{2}-x z^{3}+y^{3} z-y^{2} z^{2}+y z^{3}-z^{4}$.
Crucial use is made of algorithms for calculating period matrices of plane curves due to Christian Neurohr (Oldenburg).

Gluing: $1+2=3$

We want to invert the previous considerations on decompositions and find a genus-3 curve from two other curves of genus 1 and 2. More precisely:

Definition

Let E (resp. Y) be a curve of genus 1 (resp. 2), and let $n \in \mathbb{N}$. An n-gluing of E and Y is a genus- 3 curve X together with an isogeny

$$
\operatorname{Jac}(E) \times \operatorname{Jac}(Y) \rightarrow \operatorname{Jac}(X)
$$

under which the principal polarization on $\operatorname{Jac}(X)$ pulls back to n times the product principal polarization on $\operatorname{Jac}(E) \times \operatorname{Jac}(Y)$.

In what follows, we focus on 2-gluings: We want to find X given E and Y.

Gluing: geometric algorithms

Over \mathbb{C}, there is an obvious approach:

- Compute lattices $\Lambda_{E} \subset \mathbb{C}$ and $\Lambda_{Y} \subset \mathbb{C}^{2}$ corresponding to E and Y;
- Consider the product abelian variety

$$
\operatorname{Jac}(E) \times \operatorname{Jac}(Y) \cong\left(\mathbb{C} \times \mathbb{C}^{2}\right) /\left(\Lambda_{E} \times \Lambda_{Y}\right)
$$

and find an isotropic subgroup G of the 2-torsion $\frac{1}{2}\left(\Lambda_{E} \times \Lambda_{Y}\right) /\left(\Lambda_{E} \times \Lambda_{Y}\right)$ by using the Weil pairing;

- Reconstruct the curve X from the principally polarized quotient $(\operatorname{Jac}(E) \times \operatorname{Jac}(Y)) / G$.

The last step uses algorithms for reconstruction of plane quartics with Lercier and Ritzenthaler, plus some refinements. These allow us to construct curves of genus up to 3 with given big (instead of merely small) period matrix.

Gluing: rationality questions

The quotient by G is defined over the base field iff G is stable under $\operatorname{Gal}(\bar{F} \mid F)$. This depends on the polynomials f_{E} and f_{Y} defining $E: y^{2}=f_{E}$ and $Y: y^{2}=f_{Y}$.

Proposition (Hanselman)

For a gluing over F to exist, the polynomial f_{Y} needs to contain a single quadratic or two linear factors. That is, $\operatorname{Jac}(Y)$ needs to contain a rational 2-torsion point.

Idea of proof: Since G cannot be a product, it maps surjectively to $\operatorname{Jac}(E)[2]$. The kernel is a distinguished subgroup H of $\operatorname{Jac}(Y)[2]$.

We have full criteria for there to exist a Galois-stable G, in which case our algorithms will find a curve X over F such that

$$
\operatorname{Jac}(X) \cong(\operatorname{Jac}(E) \times \operatorname{Jac}(Y)) / G
$$

Demonstration

The curves

$$
E: y^{2}=x^{3}-x
$$

and

$$
Y: y^{2}=x^{5}+20 x^{3}+36 x
$$

give rise to 6 Galois-stable isotropic subgroups. The corresponding gluings X are given by

$$
\begin{aligned}
x^{4}+48 x^{2} y z-288 y^{4}+288 y^{2} z^{2}-8 z^{4} & =0 \\
x^{4}-48 x^{2} y z-288 y^{4}+288 y^{2} z^{2}-8 z^{4} & =0 \\
x^{4}+24 x^{2} y z-720 y^{4}+144 y^{2} z^{2}-20 z^{4} & =0 \\
x^{4}-24 x^{2} y z-720 y^{4}+144 y^{2} z^{2}-20 z^{4} & =0 \\
x^{4}+48 x^{2} y z+1008 y^{4}-432 y^{2} z^{2}+28 z^{4} & =0 \\
x^{4}-48 x^{2} y z+1008 y^{4}-432 y^{2} z^{2}+28 z^{4} & =0
\end{aligned}
$$

Implementation: https://github.com/jrsijsling/gluing

Gluing: rationality questions

Given a genus-1 curve E of gonality 2 over a number field F, given by a defining equation

$$
E: y^{2}=a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4},
$$

one can always realize E as part of a 2-gluing over F, as one sees by considering

$$
X: y^{2}=a_{0} x^{8}+a_{1} x^{6}+a_{2} x^{4}+a_{3} x^{2}+a_{4}
$$

Theorem (Hanselman)

Let Y be a genus-2 curve over F such that $\mathrm{Jac}(Y)$ contains a rational 2-torsion point. Then Y is part of a 2-gluing over F. In other words, there exist curves E and X of genus 1 resp. 3 over F such that X is a 2 -gluing of E and Y.

Hanselman found a very explicit proof; another one can be obtained by degenerating an argument of Nils Bruin on Prym varieties.

Gluing: algebraic algorithms

Upcoming work by Hanselman and Schiavone will describe another approach, which works over any field. We sketch the steps here. Let E and Y of genus 1 and 2 be given.

- Construct the Kummer variety $K \subset \mathbb{P}^{3}$ of Y, for example by using the general formulas of Jan Steffen Müller;
- Choose two nodes P_{1}, P_{2} on K.
- Consider the pencil of planes Λ through P_{1} and P_{2}. For $H \in L$, the intersection $E_{H}=K \cap H$ is a plane curve of degree 3 with two nodes, and hence of genus 1 ;

Gluing: algebraic algorithms

- Find the planes H_{1}, \ldots, H_{6} for which $j\left(E_{H_{i}}\right)=j(E)$;
- Construct the fiber products

- The curves X_{i} are 2-gluings of E and Y over \bar{F}.

All these steps can be made completely effective. Note that in particular these algorithms work over finite fields! A corresponding implementation is in progress; a proof of concept is available in Magma. Further theoretical aspects remain to be explored.

