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Setup

Let F be a number �eld with algebraic closure F al. Let X be a nice

(smooth, projective, geometrically integral) curve over F of genus g given

by equations. Let J be the Jacobian of X . We want to compute the

endomorphism ring End(J).

We represent an element α ∈ End(J) as follows. Fix a base point P0 ∈ X .

This determines a map
ι : X → J

P 7→ [P]− [P0]

which is injective if g > 0. We get a composed map

α ◦ ι : X → J → J

P 7→ α(ι(P)) =:

g∑
i=1

ι(Qi ).

This traces out a divisor on X × X , which determines α.
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Alternative representations

α ◦ ι : X → J → J

P 7→ α(ι(P)) =

g∑
i=1

ι(Qi )

Alternatively, we can use a (possibly singular) plane equation f (x , y) = 0

for X . We can describe the points Qi by giving a polynomial that vanishes

on their x-coordinates, along with a second polynomial that interpolates

the corresponding y -values. This leads to Cantor equations

xg + a1x
g−1 + ...+ ag = 0

b1x
g−1 + ...+ bg = y

with ai , bj ∈ F (X ).



Alternative representations

The tangent space of J in 0 is naturally isomorphic to the dual of

H0(X , ωX ), and over C we have

J(C) = H0(X (C), ωX )∨/H1(X (C),Z).

If D ⊂ X × X is the divisor corresponding to α, then for T = Tα we have

T = ((p1)∗(p2)∗)∨ : H0(X , ωX )∨ → H0(X , ωX )∨.

Over C, we also get a second, compatible map

R : H1(X (C),Z)→ H1(X (C),Z).

In practice, we choose bases and consider T as an element of Mg (F al) and

R as an element of M2g (Z). For the period matrix Π of X we then have

TΠ = ΠR.



Our objective, more precisely

For us, to compute the endomorphism ring of J means to determine and

represent the ring End(JF al) as a Gal(F al |F )-module. In other words, we

want to calculate

a �nite Galois extension K ⊇ F with End(JK ) = End(JF al),

a Z-basis for End(JK ), and

the multiplication table as well as the action of Gal(K |F ) (both with

respect to the aforementioned basis).

This computational problem has many applications, for example in

modularity.



Main idea: And once the twain shall meet

Davide Lombardo has shown that there is a day-and-night algorithm to

compute the geometric endomorphism ring of J. Brie�y:

By a theorem of Silverberg, End(JF al) is de�ned over K = F (J[3]).

By day, we compute a lower bound by searching for endomorphisms by

naively trying all maps J 99K J.

By night, we compute an upper bound by creeping up on the

isomorphism

End(JK )⊗ Z` ' EndGal(F al |K) T`(JK ).

Eventually, the lower and upper bounds will meet. More e�ective versions

of these upper bounds are themes of ongoing work by Lombardo et al.



State of the art on upper bounds

A ∼
t∏

i=1

Ani

i , dimLi
Bi = e2i .

Theorem

If the Mumford�Tate conjecture holds for A, then we can compute

The number of factors t;

The quantity
∑

i ein
2
i dimAi ;

The set of tuples {(eini , ni dimAi )}i .
The centers Li .



Ye olde heuristic approache

To �nd a lower bound, we �rst approximate the numerical endomorphism

ring of JC = Cg/Λ. These methods were also used in genus g = 2 by Van

Wamelen (CM) and Kumar�Mukamel (RM), using the former's Magma

algorithms.

Embed F al ↪→ C, and compute (via Molin�Neurohr or Bruin) a period

matrix Π for J to some precision, with period lattice Λ.

Use LLL to determine a basis of the Z-module of matrices

R ∈ M2g (Z) such that TΠ = ΠR for some T .

Determine the matrices T in the equality TΠ = ΠR to obtain the

representation of End(JK ) on the tangent space at 0, and recognize T

as an element of Mg (K ) using LLL.

(!!!) By exact computation, certify the endomorphisms in the previous

step.

Recover the Galois action Gal(K |F ) by the action on the matrices T .



Computing divisorial correspondences

In the approach of Van Wamelen and Kumar�Mukamel, the endomorphism

is veri�ed by interpolating the divisor after calculating enough pairs

(P,Qi ) ∈ X × X over C.

To do this, we have to understand the composed map

XC
AJ // JC

T // JC
Mum // Symg (XC)

The tricky part is the map Mum, which involves numerically inverting the

Abel�Jacobi map AJ; given b ∈ Cg/Λ, we want to �nd a g -tuple of points

{Q1, . . . ,Qg} that gives rise to it.



Robust Mumford map

We are given b ∈ Cg/Λ, and we want to compute

Mum(b) = {Q1, . . . ,Qg}

where (
g∑
i=1

∫ Qi

P0

ωi

)
i=1,...,g

≡ b (mod Λ).

This doesn't converge well! It converges better if we replace
∫ Qi

P0
with

∫ Qi

Pi

with Pi distinct and b is close to 0 modulo Λ.

To improve things, compute with b′ = b/2m with m ∈ Z>0 to �nd

Mum(b′) = {Q ′
1
, . . . ,Q ′g}. Methods of Khuri�Makdisi allow us to

(numerically) multiply back by 2m to recover {Q1, . . . ,Qg}.



Dispense with numerical interpolation

But numerical computation comes with too many epsilons; it would be

easier if we could avoid it, and in fact we can.

Theorem (CMSV, 2017)

There exists a deterministic algorithm that, given T ∈ Mg (K ), determines

whether T corresponds to an actual endomorphism α ∈ End(J), along with

a divisor D inducing α if it does.



Puiseux lift

Suppose that P0 is a non-Weierstrass point. Our methods compute a

high-order approximation of

α([P̃0 − P0]) = [Q̃1 + · · ·+ Q̃g − gP0]

where P̃0 ∈ X (K [[x ]]) is the formal expansion of P0 with respect to a

suitable uniformizer x at P0. The points Q̃i are then de�ned over the ring

of (integral) Puiseux series F al[[x1/∞]].

To do this, we proceed as follows. For j = 1, . . . , g , let

xj = x(Q̃j) ∈ F al[[x1/∞]].

The required action by α on a basis ωi of di�erentials implies:

g∑
j=1

x∗j (ωi ) = T ∗(ωi ), for all i = 1, . . . , g .



Puiseux lift

g∑
j=1

x∗j (ωi ) = T ∗(ωi ), for all i = 1, . . . , g .

To do this, we �rst determine an initial expansion, typically

x1 = c1,1x
1/g , . . . , xg = cg ,1x

1/g .

After this, we iterate. In terms of the parameter x , we get

g∑
j=1

fi (xj)
dxj

dx
=

g∑
j=1

Tij fj(x)

After integrating the fi (as power series up to a certain precision), this

becomes
g∑
j=1

Fi (xj(x)) =

g∑
j=1

TijFj(x)

and we can �nd implicit solutions xj as usual via Hensel.



Remarks

We obtain further speedups by working over �nite �elds and

reconstructing a divisor over F by using Sun Zi's theorem.

Our method works just as well for isogenies and projections.

We have veri�ed, decomposed and matched the 66, 158 curves over Q
of genus 2 in the L-functions and modular form database (LMFDB).

The algorithms verify that the plane quartic

X : x4 − x3y + 2x3z + 2x2yz + 2x2z2 − 2xy2z + 4xyz2

− y3z + 3y2z2 + 2yz3 + z4 = 0

has complex multiplication (found in work with K�l�çer, Labrande,

Lercier, Ritzenthaler, and Streng).

Try it: https://github.com/edgarcosta/endomorphisms contains

friendly button-push algorithms.

https://github.com/edgarcosta/endomorphisms


Demonstration

We can check that the curve

X : y2 + (x3 + x + 1)y = −x5.

has RM by the quadratic order of discriminant 5.

We can check that conjectural fake elliptic curves over Q(
√
−3) are

genuine. (Ciaran Schembri)

We can check that the projective curve de�ned by

−yz − 12z2 + xw − 32w2 = 0,

y3 + 108x2z + 36y2z + 8208xz2 − 6480yz2 + 74304z3 + 96y2w

+2304yzw − 248832z2w + 2928yw2 − 75456zw2 + 27584w3 = 0

is of GL2-type, with endomorphism algebra Q(ζ8) over Q; over Q, it is

the fourth power of an elliptic curve. (David Zureick-Brown)

http://www.lmfdb.org/Genus2Curve/Q/529/a/529/1


Decomposition

Let X be a genus-3 curve over F that is not simple. For simplicity, we

assume that End(X )⊗Q is isomorphic to Q×Q. Then

J = Jac(X ) ∼ E × Jac(Y )

for curves E and Y of genus 1 and 2, respectively. The algorithms enable

us to explicitly observe some rationality phenomena:

The curve E is de�ned over F , as is the corresponding projection

ϕ : X → E of degree d say;

The complementary abelian subvariety B = ker0(ϕ) carries a

polarization of type (1, d). To obtain a principally polarized variety B ′,
we need to take an isogeny of degree d .

When d = p is prime, then there are p + 1 such isogenies, which

typically form one Galois orbit.

Curves Y ′ such that Jac(Y ′) = B ′ can be found using

https://github.com/jrsijsling/curve_reconstruction.

https://github.com/jrsijsling/curve_reconstruction


Demonstration

We decompose the plane quartic curve

X := x3z+2x2y2+x2yz+2x2z2−xy2z+xyz2−xz3+y3z−y2z2+yz3−z4.

Crucial use is made of algorithms for calculating period matrices of plane

curves due to Christian Neurohr (Oldenburg).



Gluing: 1+ 2 = 3

We want to invert the previous considerations on decompositions and �nd

a genus-3 curve from two other curves of genus 1 and 2. More precisely:

De�nition

Let E (resp. Y ) be a curve of genus 1 (resp. 2), and let n ∈ N. An
n-gluing of E and Y is a genus-3 curve X together with an isogeny

Jac(E )× Jac(Y )→ Jac(X )

under which the principal polarization on Jac(X ) pulls back to n times the

product principal polarization on Jac(E )× Jac(Y ).

In what follows, we focus on 2-gluings: We want to �nd X given E and Y .



Gluing: geometric algorithms

Over C, there is an obvious approach:

Compute lattices ΛE ⊂ C and ΛY ⊂ C2 corresponding to E and Y ;

Consider the product abelian variety

Jac(E )× Jac(Y ) ∼= (C× C2)/(ΛE × ΛY )

and �nd an isotropic subgroup G of the 2-torsion
1

2
(ΛE × ΛY )/(ΛE × ΛY ) by using the Weil pairing;

Reconstruct the curve X from the principally polarized quotient

(Jac(E )× Jac(Y ))/G .

The last step uses algorithms for reconstruction of plane quartics with

Lercier and Ritzenthaler, plus some re�nements. These allow us to

construct curves of genus up to 3 with given big (instead of merely small)

period matrix.



Gluing: rationality questions

The quotient by G is de�ned over the base �eld i� G is stable under

Gal(F |F ). This depends on the polynomials fE and fY de�ning

E : y2 = fE and Y : y2 = fY .

Proposition (Hanselman)

For a gluing over F to exist, the polynomial fY needs to contain a single

quadratic or two linear factors. That is, Jac(Y ) needs to contain a rational

2-torsion point.

Idea of proof: Since G cannot be a product, it maps surjectively to

Jac(E )[2]. The kernel is a distinguished subgroup H of Jac(Y )[2].

We have full criteria for there to exist a Galois-stable G , in which case our

algorithms will �nd a curve X over F such that

Jac(X ) ∼= (Jac(E )× Jac(Y ))/G .



Demonstration

The curves

E : y2 = x3 − x

and

Y : y2 = x5 + 20x3 + 36x

give rise to 6 Galois-stable isotropic subgroups. The corresponding gluings

X are given by

x4 + 48x2yz − 288y4 + 288y2z2 − 8z4 = 0,

x4 − 48x2yz − 288y4 + 288y2z2 − 8z4 = 0,

x4 + 24x2yz − 720y4 + 144y2z2 − 20z4 = 0,

x4 − 24x2yz − 720y4 + 144y2z2 − 20z4 = 0,

x4 + 48x2yz + 1008y4 − 432y2z2 + 28z4 = 0,

x4 − 48x2yz + 1008y4 − 432y2z2 + 28z4 = 0.

Implementation: https://github.com/jrsijsling/gluing

https://github.com/jrsijsling/gluing


Gluing: rationality questions

Given a genus-1 curve E of gonality 2 over a number �eld F , given by a

de�ning equation

E : y2 = a0x
4 + a1x

3 + a2x
2 + a3x + a4,

one can always realize E as part of a 2-gluing over F , as one sees by

considering

X : y2 = a0x
8 + a1x

6 + a2x
4 + a3x

2 + a4.

Theorem (Hanselman)

Let Y be a genus-2 curve over F such that Jac(Y ) contains a rational

2-torsion point. Then Y is part of a 2-gluing over F . In other words, there

exist curves E and X of genus 1 resp. 3 over F such that X is a 2-gluing of

E and Y .

Hanselman found a very explicit proof; another one can be obtained by

degenerating an argument of Nils Bruin on Prym varieties.



Gluing: algebraic algorithms

Upcoming work by Hanselman and Schiavone will describe another

approach, which works over any �eld. We sketch the steps here. Let E and

Y of genus 1 and 2 be given.

Construct the Kummer variety K ⊂ P3 of Y , for example by using the

general formulas of Jan Ste�en Müller;

Choose two nodes P1,P2 on K .

Consider the pencil of planes Λ through P1 and P2. For H ∈ L, the

intersection EH = K ∩ H is a plane curve of degree 3 with two nodes,

and hence of genus 1;



Gluing: algebraic algorithms

Find the planes H1, . . . ,H6 for which j(EHi
) = j(E );

Construct the �ber products

Xi //

��

EHi

��
J // K

The curves Xi are 2-gluings of E and Y over F .

All these steps can be made completely e�ective. Note that in particular

these algorithms work over �nite �elds! A corresponding implementation is

in progress; a proof of concept is available in Magma. Further theoretical

aspects remain to be explored.


